

INDY-9 RED — MyFoodScan App

Software Design Document

CS 4850, Section 01/02, Spring 2024

Feb 13, 2024

 Ibrahima

 Jedae

 Bri

 Victoria

 Page 2 of 15

Table of Contents

1. INTRODUCTION 3

1.1. Document Outline 3

1.2. Document Description 4

1.2.1. Introduction 4

1.2.2. System Overview 5

2. DESIGN CONSIDERATIONS 5

2.1. ASSUMPTIONS AND DEPENDENCIES 5

2.2. GENERAL CONSTRAINTS 6

2.3. GOALS AND GUIDELINES 6

2.4. DEVELOPMENT METHODS 6

3. ARCHITECTURAL STRATEGIES 7

Choice of Product 7

Reuse of Existing Software Components 7

Future Plans 7

User Interface Paradigms 7

Error Detection and Recovery 8

External Database Management 8

Concurrency and Synchronization 8

4. SYSTEM ARCHITECTURE 8

4.1. SUBSYSTEM ARCHITECTURE 10

5. POLICIES AND TACTICS 10

Choice of Product 10

Engineering Trade-offs 10

Coding Guidelines and Conventions 11

Testing the Software 11

Maintaining the Software 11

6. DETAILED SYSTEM DESIGN 12

6.1. Frontend Module 12

6.1.1. Home Page 12

6.1.2. Scanner 12

6.1.3. User Profile 12

6.1.4. History 12

6.1.5. Product Details 13

6.2. Backend Module 13

6.2.1. Firebase Authentication 13

6.2.2. Firebase Firestore 13

6.2.3. Firebase Cloud Functions 13

6.3. External API Integration 14

6.3.1. OpenFoodFacts API 14

6.4. DETAILED SUBSYSTEM DESIGN 14

7. GLOSSARY 15

 Page 3 of 15

1. Introduction

1.1. Document Outline

● Document Description
○ Introduction
○ System Overview

● Design Considerations
○ Assumptions and Dependencies
○ General Constraints
○ Goals and Guidelines
○ Development Methods

● Architectural Strategies
○ Choice Product
○ Reuse of Existing Software Components
○ Future Plans
○ User Interface Paradigms
○ Error Detection and Recovery
○ External Database Management
○ Concurrency and Synchronization

● System Architecture
○ Subsystem Architecture

● Policies and Tactics
○ Choice of Product
○ Engineering Trade-offs
○ Coding Guidelines and Conventions
○ Testing the Software
○ Maintaining the Software

● Detailed System Design
○ Frontend Module

■ Home Page
■ Scanner
■ User Profile
■ History
■ Product Details

○ Backend Module
■ Firebase Authentication
■ Firebase Firestore
■ Firebase Cloud Functions

○ External API Integration
■ OpenFoodFacts API

○ Detailed Subsystem Design
● Glossary

 Page 4 of 15

1.2. Document Description

1.2.1. Introduction

The detail design phase plays a major role in the software engineering process. One important
role of the design engineering activities is the Software Design Document (SDD). A SDD is
an overall written description of a software product’s design, detailing its general architecture.
The purpose of this SDD is to highlight the architecture and system design of our mobile
application, doing so in such a manner that allows the software development process to
progress with a clear indication of how the software should be built.

Overall, the goal of this document is to describe the “how” of the development process,
making sure that the possibilities of the product and how it can be achieved is clear to all.
Thus, the intended audience of this SDD include any overseers who are interested in reading
an explanation of the design process of the application and how it is planned to be built. A
prerequisite for this document is the software requirements specification (SRS), which
provides background of the requirements for the application. The contents of this document
will also play a major role in the development of the final report document.

In response to the growing need for personalized dietary management, this project proposes

the development of an advanced food/snack scanning application. The application will utilize

cutting-edge image recognition and AI technology to analyze food products and identify their

compliance with various dietary restrictions such as kosher, Halal, vegan, vegetarian, and any

allergen-specific needs.

Additionally, the application will feature user profiles where individuals can specify their

dietary restrictions, allowing for a customized experience. To enhance engagement, the app

will also use a recommendation algorithm to provide users with similar products that follow

their dietary needs. The process will involve scanning the barcodes of the user’s purchased

food items, which will serve queries to a database containing nutrition information, providing

the user with the necessary knowledge about their products. Moreover, the application will

conveniently store the user’s previous scans to provide a concise user archive and prevent

redundancy.

For the development of the app, a frontend framework with comprehensive and cross-

platform capabilities will be chosen. Additionally, UX/UI prototyping with a user-friendly

design will be conducted. In terms of backend development, a backend cloud computing

platform will be used, particularly for its smooth compatibility with the frontend framework.

Lastly, the implementation of Machine Learning (ML) algorithms is crucial for the image

recognition and recommendation component of the application, ensuring accurate product

scanning and analysis.

1.2.2. System Overview

Figure 1 Diagram of Application Overview

Figure 1 above showcases the architectural structure chosen for developing MyFoodScan. The
backend will be responsible for requesting and receiving information from OpenFoodFacts
API that the application will be dependent upon. Furthermore, the frontend development will
involve using React Native as the frontend framework, as it has many comprehensive and
cross-platform capabilities. For the prototype, Canva and Figma will be used. In terms of
backend development, Google Firebase will be used for data storage and retrieval from
OpenFoodFacts API.

2. Design Considerations

2.1. Assumptions and Dependencies

There exist a few assumptions, such as technical and user assumptions. Technical
assumptions consist of the availability of specific hardware components, compatibility with
particular databases and operating systems, and the presence of required network
connectivity. User assumptions involve the user having prior experience with similar
technology and familiarity with functions of similar mobile applications. It is also assumed
that the user has access to an iOS or Android device.

2.2. General Constraints

 Page 6 of 15

Physical, operational, and deployment environments that should all be considered. In regard
to the physical environment, the software should be in compliance with the latest version of
iOS and android. For the operational environment, the system should operate best in a high-
speed internet environment that has the lowest requirement of 256 kbps to run. Furthermore,
in terms of the deployment environment constraints, the application must be deployable on
Google Firebase as a cloud infrastructure to be used for data storage and retrieval from
OpenFoodFacts API.
The application’s target audience is users approximately 18 years of age and older,
particularly those with a demand to seek information about whether their purchased products
comply with a specific dietary need(s) or not. In terms of categorization, distinct groups of
users include those who personally have dietary restrictions, users who know others that have
dietary restrictions, users who are seeking more knowledge regarding specific dietary
restrictions, etc.
Regarding system constraints, the software needs to integrate with the OpenFoodFacts API
for product consumption services. The data from OpenFoodFacts will be utilized in the
Google Firebase database, in addition to further consumer data.

2.3. Goals and Guidelines

One main goal of the design of the application includes quick information retrieval from
OpenFoodFacts API. Other aims pertaining to the speed are low latency for users of the
application and maintaining scalability with the addition of multiple users on the application
at one time. Priorities also include creating an application that is both user-friendly and
intuitive to use. Moreover, guidelines for the development of the application include creating
a product that works, looks, and feels like an existing product. Lastly, another objective is that
the application has a strong demand among potential users and the intended audience.

2.4. Development Methods

The methods used for the software design process will be the Waterfall and Prototyping
method. The waterfall method is a software development method of completing tasks in
sequential phases. The phases consist of requirements, design, implementation, verification,
and maintenance. This method makes the development process easy to execute since it
establishes clear requirements and goals. In the prototyping method, the goal is to create a
usable and working prototype that can be tested before the actual development begins. With
this method, we can identify any potential issues early on and receive valuable feedback to
produce a high-quality application.

3. Architectural Strategies

Choice of Product

After considering several options, we decided to utilize React Native for the frontend
development of MyFoodScan. React Native’s cross platform capability satisfies both users
who may be using other operating systems and provides tools such as libraries that will help
support the development process. The libraries that will be used to develop MyFoodScan are
React Native Camera, React Native Firebase, React Native Scanner, and TailwindCSS. React
Native Camera will provide the app with camera access and will be cooperating with the
scanner library to scan barcodes. TailwindCSS will be used to help with the frontend
development. React Native was also chosen for its main programming language JavaScript
due to its functionality and ease of use. As for the backend, our strategy is to use a Google
firebase to securely store user scans and personal information. In addition, Firebase was also
chosen for its real-time database, query speeds, and compatibility with React Native.

Reuse of Existing Software Components

Some software components will be reused to implement various parts/features of the system.
In regard to design, many components of the software might be reused, such as the software
to create a button on one page being reused to create a button on a new page, for example.

Future Plans

There are a few future plans for extending and enhancing the software, such as providing
additional menu options and a notification system. For the additional menu options, we will
extend the software to include two more pages, allowing the navigation bar to include five
options compared to only three. These two new pages will be a favorites page and an
education page. The favorites page will be a section where users can save scans of various
products, allowing further convenience for users to have their most common or liked items in
one easy-to-access selection. The education page will provide a section where users can be
educated on various dietary restrictions, advancing one of the goals of the application.
Moreover, for the notification system, we will enhance the software to include notifications
for users who agree to receive them. These notifications will consist of friendly reminders to
users to return to the application for increased user involvement and engagement, fun facts
about various dietary restrictions to further educate the users, and more.

User Interface Paradigms

Each page will have several icons the user can interact with through touch gestures to promote
user engagement. The navigation bar provides the user with three options. One icon takes the
user to the scanner, another will take the user to an archive of their previous scans, and the
last icon takes the user to their user profile. Users can edit their own user profile to update
their preferences by selecting different buttons and typing information. In the history page,
users can select the image of their previously scanned item and view information like the
name of the product and the ingredient list.

 Page 8 of 15

Error Detection and Recovery

Errors are inspected in relation to bugs, parts of source code that create undesirable or
unintended results. Jest will be used as the main testing software, as it is commonly used to
test JavaScript projects. Software testing methodologies include performance testing and end-
to-end tests. Performance testing examines the reliability, speed, and responsiveness of the
source code. For end-to-end tests, we will act as the user and test the functionality of the
application to ensure users can navigate the functions as planned. For example, for error
detection, we will act as the user creating an account, scanning a product’s barcode, seeing if
the information regarding if the product aligns with the desired dietary needs is accurate, etc.
For recovery, after completing end-to-end testing and errors are detected, adjustments in the
source code will be made and end-to-end testing will occur again until acting as the user and
navigating all of the functions of the application is finally conducted as planned.

External Database Management

Firebase Cloud Functions will be used for the external database management of the
OpenFoodFacts API. Cloud Functions is a serverless framework for developing event-driven
applications. Cloud Functions will be used to retrieve the data of the product’s information
from OpenFoodFacts.

Concurrency and Synchronization

Google Firebase provides concurrency and synchronization for our users with Realtime
Database and Firestore. Both databases use a NoSQL cloud database, which allows data to be
synced and updated at all times. This tool is intended for the user profiles, as we will securely
store each user’s information in an organized collection. Each user will have access to view
and edit their information at any time, even if they have no internet access. If a user wants to
edit their information, Firestore offers data synchronization to provide the user with real-time
updates. Firestore also allows multiple users who create a profile to independently access their
own information concurrently.

4. System Architecture

MyFoodScan is intended to handle user interaction, data retrieval, data management,
authentication, and security. The user interface component governs user input, output, and
navigation. The data retrieval component collects and processes food product data from
additional sources, whereas the data management component maintains and manages user
profiles, preferences and historical data. The authentication and security component provides
safe access to the application and user data.

In the application, collaboration among components is key: React Native app interacts with
Firebase Authentication for user registration and sign-in via Frontend and Backend
interaction. Firebase Firestone is the source from which user profiles and preferences are
saved and retrieved. Firebase Cloud Functions receives barcode data from the app and uses it
to communicate with the OpenFoodFacts API. External API and Backend Interaction pertains

 Page 9 of 15

to Firebase Cloud. By requesting product data from OpenFoodFacts via API calls and sending
the processed results back to the frontend, Cloud Functions serve as a secure middleman.

According to the Model-View-Controller (MVC) design, the decomposition that was selected
makes it possible to distinguish clearly between client-side and server-side activities. Because
of this division, it is possible to design and update the user interface separately from the
backend functionality. Furthermore, it enables the backend to be scaled separately to meet
dynamic loads, which is crucial for the app’s prospective expansion.

Figure 2 High-Level Architecture Diagram

4.1. Subsystem Architecture

 Page 10 of 15

One of the most important components of the application is the ML Recommendation System.
Its main duties include learning, pattern recognition, and data analysis. To comprehend
preferences and dietary constraints, it examines user behavior and product data. The pattern of
the dataset can be used to forecast consumer preferences. The subsystem adapts product
recommendations to each user’s specific dietary needs and keeps learning from user
interactions and makes accurate recommendations over time.

The ML subsystem communicates with the rest of the application. It trains its models using
product information from the OpenFoodFacts API and user profiles from Firebase Firestone.
It works with React Native frontend to seamlessly present recommendations to the user.
Depending on the complexity, the ML recommendation system can be contained within
Firebase Cloud Functions or an alternative ML server.

As a subsystem, ML component needs to be flexible and scalable for the app architecture.
Recommendation as a separate subsystem is the best approach because ML tasks are resource-
intensive, having allocation be done to ensure efficient performance.

5. Policies and Tactics

Choice of Product

We had two options to consider for the front-end development of our application. The first
option was to use Flutter, an open-source framework created by Google that allows
developers to easily create a user interface. Flutter supports cross-platform app development
and supports various platforms, such as iOS and Android. The main programming language
used is C and Dart, which is a language that is optimized to support building UIs. The second
option that was considered is React Native, an open source framework created by Meta
Platforms. Similar to Flutter, React Native supports cross-platform app development and
allows developers to create applications for iOS and Android simultaneously. It also uses
various programming languages, but the main language that will be used is JavaScript. After
some consideration, we decided to use React Native because of its simplicity and familiarity.
There are several libraries included in React Native that can help support the development of
the application, such as React Native Camera, React Native Firebase, React Native Scanner,
and TailwindCSS. In addition to using libraries, React Native also supports Firebase, the
database that the application will use.

Engineering Trade-offs

Performance vs Functionality: The goal is to create an application that contains various usable
features without decreasing the overall performance of the application. The users should be
able to access and use all features on the application without encountering any problems or
delays. To balance both features, the application will prioritize the essential functions the user
needs, such as the barcode scanner. Images can be compressed to reduce the size and improve
the load time. The user interface will be simple and will not have any extra content that may
affect the overall performance.

Security vs Usability: Each user that downloads MyFoodScan will be prompted to create a
user profile for a more enhanced and interactive experience. The application will clearly
communicate what permissions it will need from the user, such as access to the camera. These

 Page 11 of 15

permissions can also be revoked by the user at any time. Any errors a user may encounter will
include clear error messages to help them understand what happened.

Customization vs Standardization: MyFoodScan will give the users customization options to
provide a more personalized user experience. However, it is also important to keep the
interface simple and intuitive to prevent any confusion. When users set up their own profile,
they are given the option to select their dietary restrictions and update their preferences,
including their notification settings and camera access permission. This personalization tailors
the application towards the user, but the general functionality of the application should be the
same for each user.

Coding Guidelines and Conventions

When using React Native, it is important to follow the standard coding guidelines to ensure
readability. consistency, and maintainability. This includes using the proper naming
conventions and organizing all files in folders. Comment documentation in code can help with
readability and allows everyone to understand the purpose of each piece of code. Some
commenting conventions that can be implemented are placing comments on separate lines and
only using it when necessary to keep the code visually clean and organized. Since the main
platforms for this application are iOS and Android, it is also important to follow the
guidelines and best practices for both platforms. The guidelines that will be followed for iOS
devices can be found in the Human Interface Guidelines by Apple Developers. The guidelines
for Android can be found in Material Design for Android by Android Developers.

Testing the Software

Before launching the application, it is important to ensure that the application is able to
function properly. There are several testing methods and tools that will be used to test the
application. A tool that will help determine the performance of the application is Jest, a
framework that tests JavaScript projects. This will help determine the overall performance of
the application. A testing method that will be used is functional testing, which tests the
functions in the application to ensure that they perform the tasks that were previously
specified. Afterwards, performance testing can be executed to examine the overall
performance of the application such as scalability, speed, and reliability.

Maintaining the Software

The corrective software maintenance method will be followed to maintain the software of the
application. When an error occurs in the software, the problem must be addressed and solved
as quickly as possible. This can also be enforced by taking in feedback from users who
download the application. Whenever the user encounters an error, we can take their feedback
to fix the errors. The feedback can also be used to further improve the application by taking in
suggestions from the users. However, the current goal is to track any bugs or issues and solve
them as quickly as possible before the users encounter them. The maintenance method is
subject to change in the future as the application improves overtime.

 Page 12 of 15

6. Detailed System Design

6.1. Frontend Module

6.1.1. Home Page

The home page of the application consists of sign in and sign up options. One of the
displayed options will be to sign up/in manually. This option allows users to manually
set a username and password which is securely stored in the firebase database after
authentication. The second option asks users if they want to sign in with a Social
Login. This feature allows users to access new applications or websites using their
existing login information from social networking services (Google, Yahoo, etc.) thus
simplifying the registration and authentication.

6.1.2. Scanner

Upon passing the home sign-in page and account setup (if first time user), the
MyFoodScan application will directly then go to the scanning page. The scanner will
be centered on the navigation menu and centered on the user profile and history. Scans
will operate by importing the barcode scanner library and linking the native code. A
permissions configuration will also be implemented to request camera access from
users. Once an item is scanned, the app then makes a call to the OpenFoodFacts API
for database matching.

6.1.3. User Profile

The user profile page displays comprehensive personal information provided by users.
Name, date of birth, email, phone number, dietary preferences, and a logout option
will be displayed here. If users wish to update their email or phone number, they will
undergo a verification process to ensure secure authentication of the new information.

6.1.4. History

The history page displays a list of the past ten previous items that the user scanned.
This list will be displayed in a 2-column grid layout. Each product is showcased with
an image and title of the product. In the corner of each product’s display box, either a
check will be shown if the product does align with their current dietary needs or an
“x” will be shown if the product does not. This format will allow for the convenience
of users to quickly access the previous items they have scanned and also to see if the
product does or does not fit into their personalized diet.

6.1.5. Product Details

After the successful scanning of a product, the app transitions to the product details
page, where users are presented with comprehensive information sourced from the
OpenFoodFacts database. The page will display an image of the product and below
that a note of ingredient information. After the image and ingredients, there is a box
that displays if the scanned food follows dietary restrictions. “x” if it is not and a
checkmark if it is compliant. Below that will contain the recommendations, showing
users similar products that are compliant or other options if they are not compliant.

 Page 13 of 15

6.2. Backend Module

6.2.1. Firebase Authentication

This service will handle both manual sign-ups/sign-ins and social logins. For manual
authentication, it stores and manages user credentials (username and password). For
social logins, it integrates with various social networking services like Google and
Yahoo, enabling users to sign in with their existing accounts.

Manual Authentication Process: When a user chooses to sign up/in manually, the
backend will validate against the Firebase Authentication system. After successful
authentication, the user is granted access to the application

Social Login Process: The backend will utilize OAuth protocols to authenticate users
via their social media accounts ensuring a secure exchange of user data between social
platforms and the application.

6.2.2. Firebase Firestore

The NoSQL database will store and manage user profiles with their personal
information, and the history of scanned products. Firestore offers real-time data across
user devices, ensuring that users have access to their data anytime.

User profile management: Firestore will be used to create, update, and delete user
profile information. When a user updates their email or phone number, the verification
process will be triggered to authenticate the new information before updating.

History Management: The application will store the history of the last ten scanned
items in Firestore. Each entry will include the product image, title, and dietary
alignment status (check or “x”), allowing users to view previously scanned products.

6.2.3. Firebase Cloud Functions

These functions will serve as backend logic for the application, handling operations
that are triggered by app events or HTTP requests. The functions interact with the
OpenFoodFacts API to fetch details after scanning.

Product Lookup: When users scan a product, a Firebase cloud function will be
triggered to make a call to the OpenFoodFacts API, retrieve the product details, and
return the information to the frontend.

Compliance Check: Another set of cloud functions will analyze the product details
against the user’s dietary preferences to determine compliance (represented by a check
or “x”).

 Page 14 of 15

6.3. External API Integration

6.3.1. OpenFoodFacts API

The integration process involves making HTTP requests to the OpenFoodFacts API,
parsing the return data, and then utilizing this data to enhance the user experience by
providing detailed product information and dietary compliance insights. Upon
receiving a response from the OpenFoodFacts API, the backend function parses the
JSON data to extract the relevant product details.

6.4. Detailed Subsystem Design

The recommendation system is an important content-based subsystem that tailors food
product recommendations to individual dietary choice and limits. During initialization, the
system distinguishes between new and returning users. New users must complete a
registration process in which they provide their dietary preferences and restrictions,
allowing the system to develop a personalized user profile. Existing users just log in, and their
existing profiles are used to guide the recommendation process.

The algorithm, which filters and ranks food items from the database depending on the user’s
dietary profile. This algorithm evaluates nutritional facts and ingredients, ensuring that they
meet the user’s dietary requirements. It also learns from prior encounters in order to improve
its accuracy over time. When users interact with the recommendations-via acceptance or
rejection, the system collects the feedback and dynamically updates user profiles.

The feedback loop is critical to the system’s iterative design, allowing the recommendation
engine to continuously enhance the customization of the system’s suggestions. Every user
interaction provides a chance for learning, ensuring that recommendations are tailored to
user’s changing preferences and constraints. The content-based strategy was purposefully
designed to satisfy specific dietary demands while stressing user privacy and tailored health
concerns.

Figure 3 Overview of Recommendation System

 Page 15 of 15

7. Glossary
OpenFoodFacts: a database containing information about food products, such as the products’
ingredients, allergens, nutrition information, etc.
Google Firebase: a backend cloud computing service that allows for mobile app development
Model-View-Controller (MVC) pattern: a software design pattern that arranges an
application’s logic three interconnected layers

	1. Introduction
	1.1. Document Outline
	1.2. Document Description
	1.2.1. Introduction
	1.2.2. System Overview

	2. Design Considerations
	2.1. Assumptions and Dependencies
	2.2. General Constraints
	2.3. Goals and Guidelines
	2.4. Development Methods

	3. Architectural Strategies
	Choice of Product
	Reuse of Existing Software Components
	Future Plans
	User Interface Paradigms
	Error Detection and Recovery
	External Database Management
	Concurrency and Synchronization

	4. System Architecture
	4.1. Subsystem Architecture

	5. Policies and Tactics
	Choice of Product
	Engineering Trade-offs
	Coding Guidelines and Conventions
	Testing the Software
	Maintaining the Software

	6. Detailed System Design
	6.1. Frontend Module
	6.1.1. Home Page
	6.1.2. Scanner
	6.1.3. User Profile
	6.1.4. History
	6.1.5. Product Details

	6.2. Backend Module
	6.2.1. Firebase Authentication
	6.2.2. Firebase Firestore
	6.2.3. Firebase Cloud Functions

	6.3. External API Integration
	6.3.1. OpenFoodFacts API

	6.4. Detailed Subsystem Design

	7. Glossary

